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Purpose and summary

Purpose:

Challenge: to understand oil price dynamics in the long run, but also
on short scales, in particular, for the recent period (since 2014).

Idea: to adapt and exploit elaborated tools developed for turbulence
data.

Summary:

Oil price data have a rich multiscale structure that may vary over
time.

The monitoring of these variations shows regime switches.

The quantitative analysis is carried out by a wavelet decomposition
method.
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Oil price data from 1987 to 2017 for West Texas (red dashed line) and
Brent (solid blue line).
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Early history of price modeling

1900: Louis Bachelier “Théorie de la Spéculation”:
- Modeling of prices and pricing of options.
- Analysis of Brownian motion (predates Einstein’s 1905 works).

The price changes over different time intervals [tn, tn+1] are independent,
Gaussian, zero-mean, and with variance proportional to tn+1 − tn.

Increments of Brownian motion model “absolute” price changes,
essentially:

P(tn+1)− P(tn) = σ(B(tn+1)− B(tn)).
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Standard price model

1960s: Paul A. Samuelson:
Increments of Brownian motion model “relative” price changes, essentially:

P(tn+1)− P(tn)

P(tn)
= σ(B(tn+1)− B(tn)),

with, in addition, possibly a deterministic drift.
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Standard price model

Price P(t) = a drift d(t) + a diffusion, that can be expressed in
terms of Brownian motion B(t) and volatility σt :

dP(t)

P(t)
= d(t)dt + σtdB(t)

The Brownian motion B is a Gaussian process with independent and
stationary increments:

E
[
(B(t + ∆t)− B(t))2

]
= |∆t|

It is self-similar:

B(at)
dist.∼ a1/2B(t) for any a > 0

The volatility is the most important ingredient of the standard model.

I When σt ≡ σ and d(t) ≡ d , this is the Black–Scholes model (1973).
I When σt ≡ σ(t,P(t)), this is the local volatility model (Dupire, 1994;

Derman and Kani, 1994).
I When σt is a stochastic process, this is the stochastic volatility model

(Hull and White, 1987; Heston, 1993).
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Returns for West Texas (red dashed line) and Brent (solid blue line).

Rn+1 =
P(tn+1)− P(tn)

P(tn)
, tn = n∆t
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Modeling of prices: An alternative approach

1960s: Benoit Mandelbrot:
Increments of fractional Brownian motion model “relative” price changes,
essentially:

Rn+1 =
P(tn+1)− P(tn)

P(tn)
= σ(BH(tn+1)− BH(tn)).

→ Returns have “memory”:

ρH =
E[Rn+1Rn]

E[R2
n ]

= 1− 22H−1.

Thus in general:

E[Rn+1 | Rn] = ρHRn

6= E[Rn+1 | Rn,Rn−1].
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Hurst sensitivity of return correlation
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ρH =
E[Rn+1Rn]

E[R2
n ]

= 1− 22H−1.
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Fractional price model

Price P(t):
dP(t)

P(t)
= d(t)dt + σtdBH(t)

where BH is a fractional Brownian process with Hurst index H.

BH is a Gaussian process with dependent and stationary increments:

E
[
(BH(t + ∆t)− BH(t))2

]
= |∆t|2H

Properties:
I It is self-similar:

BH(at)
dist.∼ aHBH(t) for any a > 0

I If H = 1/2: it has uncorrelated increments (standard Brownian
motion).

I If H < 1/2: it has negatively correlated increments (anti-persistence).
Trajectories are rough (but continuous).

I If H > 1/2: it has positively correlated increments (persistence).
Trajectories are smooth (but not differentiable).
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Radical change of perspective: The Hurst coefficient and volatility are the
fundamental quantities.
The Hurst coefficient governs the scaling of volatility with the time lag.
Example: If we condition “volatility” to be one at time lag 1 (say in
annualized units), then St.dev(σB(t)), t ∈ (0, 2), σ = 1:
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Classic case:
H = 1/2: independent increments.
Limit cases:
H → 1: Increments equal: ∆Bn = ∆Bn−1.
H → 0: Increments alternate in sign: ∆Bn = −∆Bn−1.
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Ornstein–Uhlenbeck processes

dZ (t) = −Z (t)dt + dBH(t)
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History

Fractional processes:

Kolmogorov (1940): turbulence (turbulent flow composed by ”eddies”
of different sizes).

Hurst (1951): hydrology (fluctuations of the water level in the Nile
River).

Mandelbrot and Van Ness (1968): finance.

Comte and Renault (1998): stochastic volatility.

Gatheral et al (2014): rough stochastic volatility.
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Multi-fractional price model
→ Motivated by the data, let increments of multi-fractional Brownian
motion model “relative” price changes, essentially:

Rn+1 =
P(tn+1)− P(tn)

P(tn)
= σn(BHn(tn+1)− BHn(tn)).

Price P(t):
dP(t)

P(t)
= d(t)dt + dBH,σ(t)

where BH,σ is a multi-fractional process (Ht and σt are
time-dependent) (Lévy-Véhel 1995).

If Ht ≡ H and σt ≡ 1, then BH,σ = BH fractional Brownian motion.

→ Some issues:

Rapid Monte-Carlo simulation of price “paths”.

Estimation of the parameters.
↪→ use of wavelets.
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Wavelets

Main context: Signals may have frequency content that varies with
time. Ex: speech.

A Fourier decomposition gives the “global” frequency decomposition.

A wavelet decomposition gives a local characterization of the
frequency contents.

→ To detect changes in the multiscale character of the prices the wavelets
are useful.

Cf: Meyer 1984, Mallat, Daubechies...
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Joint estimation of Hurst and volatility

Use wavelet decomposition to localize in time and frequency the
different components of the time series.
↪→ Wavelet coefficients are indexed by time and frequency.

Consider the decay of the wavelet coefficients as a function of
frequency for a fixed time.
↪→ The decay has a power-law form.
↪→ The parameters of this power law give the local Hurst and
volatility parameters.

Remark: Many methods for Hurst parameter estimation:
I Box-count estimator (Hall and Wood, 1993).
I Variogram estimator (Constantine and Hall, 1994).
I Level crossing estimator (Feuerverger, Hall and Wood, 1994).
I Variation estimators (multiscale moments).
I First spectral and wavelets estimators (Chan, Hall and Poskitt, 1995).

Statistical characterization of the local Hurst and volatility estimator.
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Estimated Hurst exponents Ht .

• There are four periods with a relatively high Hurst exponent, which can
be related to four events, marked with crosses.
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Local volatility estimates relative to the annual time scale σt .

• There are four periods with relatively high volatility, which can be
related to four events, marked with crosses.
• Volatility is stable except: four special periods + period 2010-2014
(decaying volatility).
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August 1990: Iraq’s invasion of Kuwait; it initiated a period with
high volatility and a high Hurst exponent.
January 2000: fear of the Y2K bug (?), which never occurred; it
ended a period with relatively high volatility and Hurst exponent.
September 2008: bankruptcy of Lehman Brothers; it initiated a
period with very high volatility and a high Hurst exponent.
July 2014: liquidation of oil-linked derivatives by fund managers; it
initiated a period with a very high Hurst exponent and high volatility.
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The “global power law” for West Texas data (red dashed line) and Brent
data (blue solid line).

• A global power law (with H = .47) is consistent with a situation in
which the Hurst exponent and volatility vary over subsegments.
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Spectral misfits for the West Texas data (red dashed line) and the Brent
data (solid blue line).

• The spectral misfits are low and statistically homogeneous with respect
to time.
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Are returns Gaussian?
• Standard normalized returns:

R
(s)
n =

log(P(tn))− log(P(tn−1))

σ|∆t|1/2
.

• Multi-fractional normalized returns:

R
(m)
n =

log(P(tn))− log(P(tn−1))

σn|∆t|Hn
.
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Comparison with standard model
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Estimated volatilities when we condition on H = 1/2 to enforce
uncorrelated returns.

• The four special periods do not appear so clearly; beyond these special
periods, the standard volatility experiences somewhat strong variations.
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Comparison with standard model
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Spectral misfits
Left when we condition on H = 1/2 to enforce uncorrelated returns.

Right with the multi-fractional model.

• With H fixed, the spectral misfits are relatively high; they also vary
significantly during the special periods.
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Conclusions so far

Oil data contain multiscale fluctuations different from (log) normal
diffusions.

Special periods with Ht > 1/2 can be identified.

Standard volatility estimates are not appropriate during the special
periods when Ht > 1/2.
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On classic and real markets

→ In “classic” financial markets (with no arbitrage), the conditional
expectation of the returns are zero.

→ In “real” markets, we see deviations from the “ideal classical” context.

→ For H 6= 1/2, the market is not efficient and pricing and hedging
become challenging.

In what follows: different markets.
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Natural gas price
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Henry Hub natural gas spot price.

Some events:
– 2001: California energy crisis;
– 2003: cold winter;
– end of 2005: hurricanes Katrina and Rita and volatile weather;
– 2008: the price increase corresponding to the high oil price.
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Natural gas price
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Left: Scale spectrum for Henry Hub natural gas for the period
1997–2009. The estimated Hurst exponent is H = .37. The estimated
volatility is σ = 49%. The red dotted line is the fitted spectrum and fits
the data well up to an outer scale of more than one year.
Right: Scale spectrum for Henry Hub natural gas for the period
2009–2016. The estimated Hurst exponent is H = .40. The estimated
volatility is σ = 43%.
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Natural gas price
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Left: Estimated Hurst exponents Ht for the Henry Hub natural gas spot
price.
Right: Estimated volatility σt for the Henry Hub natural gas spot price.
Crosses:
January 2000: Y2K bug (?); September 2008: bankruptcy of Lehman
Brothers; July 2014: liquidation of oil-linked derivatives by fund managers.
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Natural gas price
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Left: Spectral misfits for Henry Hub natural gas.
Right: Spectral misfits for Henry Hub natural gas when we condition on
H = 1/2 to enforce uncorrelated returns.
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Daily gold prices.
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Gold multi-fractal character
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Daily gold prices.

Blue crosses:
- Black Monday, October 19, 1987.
- Mexican peso crisis, December 1994.
Red crosses as above, but now associated with a rough period.
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Foreign exchange
Consider the daily closing of yen-per-dollar price:
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The price process corresponding to the daily closing of yen-per-dollar price.

• Does the exchange rate possess a multiscale structure?
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USD–JPY scale spectrum
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Scale spectrum for the full data set.

→ Efficiency on the grand scale with estimated H = .51.
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USD–JPY volatility
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– January 1973: A series of events led to the first oil crisis that hit in
October 1973;
– January 1978: A series of events led to the Iranian revolution of 1979
and the second oil crisis;
– September 1985: The Plaza Accord. This was a signed agreement
between major nations affirming that the dollar was overvalued.
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USD–JPY volatility
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– April 1995: The yen briefly hit a peak of under 80 yen per dollar after
US–Japanese trade frictions sparked heavy selling of the dollar.
– October 1998: Near collapse of the hedge fund Long-Term Capital
Management.
– September 2008: Lehman Brothers collapsed.
– April 2013: The Bank of Japan announced the expansion of its Asset
Purchase program.
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USD–JPY Hurst
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– January 1973: A series of events led to the first oil crisis that hit in
October 1973.
– January 1978: A series of events led to the Iranian revolution of 1979
and the second oil crisis.
– September 1985: The Plaza Accord: This was a signed agreement
between major nations affirming that the dollar was overvalued.
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USD–JPY Hurst
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– April 1995: The yen briefly hit a peak of under 80 yen per dollar after
US–Japanese trade frictions sparked heavy selling of the dollar.
– October 1998: Near collapse of the hedge fund Long-Term Capital
Management.
– September 2008: Lehman Brothers collapsed.
– April 2013: The Bank of Japan announced the expansion of its Asset
Purchase program.
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Some further issues

“High-frequency” data.

Periodicities.

Cross-commodity correlations and derivatives.

Interest rate.

Consequences for speculation and risk management.
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Final remarks

Multi-fractal behavior can be observed in various markets.

We have developed a theory for the performance of the estimator.
→ The Haar wavelets are partly superior.

Multi-fractal modeling means a departure from classic financial
modeling.

Power-law modeling potentially important for regime shift detection,
prediction, pricing, hedging,...

Viewing the market and prices through the lens of both roughness
and magnitude scaling (H, σ) gives “complementary” (economic)
insight about the market.

Claim: As in physics, H is a defining parameter. H < 1/2 gives a
modification of the efficient market situation, while H > 1/2 changes
the problem in a more fundamental way.
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Appendix: The case of dyadic Haar wavelets

Denote the approximation coefficients at level zero (the data) by:

X = (a0(1), a0(2), ..., a0(2M)).

Then, at the scale j (corresponding to frequence 2−j), define the
approximation and difference coefficients by:

aj(n) =
1√
2

(aj−1(2n) + aj−1(2n − 1))

dj(n) =
1√
2

(aj−1(2n)− aj−1(2n − 1)) , for n = 1, 2, ..., 2M−j

for j = 1, ...,M.
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Appendix: Coefficients from the continuum
If a0(n) =

∫ n
n−1 Y (t)dt, then the detail coefficients at level j can

alternatively be expressed as:

dj(n) = 2−j/2

∫ ∞
−∞

ψ(t2−j − n)Y (t)dt

for Y , the (quasi-continuous) data, and with the mother wavelet defined
by

ψ(x) =


−1 if − 1 ≤ x < −1/2
1 if − 1/2 ≤ x < 0
0 otherwise

.

→ The difference coefficients correspond to probing the process at
different scales and locations, with n representing the location and j the
scale.

• From the self-similarity of fractional Brownian motion, it follows that for
Y (t) = BH(t):

E [dj(n)2] ∝ 2j(2H+1).
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Appendix: Scale spectrum

The scale spectrum of X, relative to the Haar wavelet basis, is the
sequence Sj defined by:

Sj =
1

2M−j

2M−j∑
n=1

(dj(n))2 , j = 1, 2, ...,M.

For fractional Brownian motion, the log of the scale spectrum is
approximately linear in the scale j , with the slope determined by H.
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Appendix: The relation to the scale spectrum

• If the underlying process has the correlation structure of fractional
Brownian motion, the log-scale spectrum is affine in scale:

E[log(Sj)] = c0(σ,H) + (2H + 1)j .

Some issues:

What are precision-of-parameter estimates?

What is the role of the wavelets?

What is the role of the scales and the shifts used?

How should the regression be carried out?
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Appendix: Analysis of precision

Different wavelets (Daubechies) can be used as well.

A detailed analysis of the biases and variances of the volatility and
Hurst parameter estimators is possible when the underlying process is
fractional Brownian motion.

The decomposition with Haar wavelets gives the most efficient
estimator (as long as H is below .7).
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Appendix: On the parameter processes

Assume that the underlying process is fractional Brownian motion.

It is possible to study the estimators Ĥ(c) and ̂log2(σ2)(c) seen as
processes indexed by the right end points c for moving time windows
of equal length.

The estimators Ĥ(c) and ̂log2(σ2)(c), as processes indexed by c , have
stationary Gaussian distributions with a covariance structure that is
universal.

→ It is possible to implement a filter to estimate more accurately the
Hurst and volatility parameters.
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